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We report the experimental demonstration of an optical
differentiation wavefront sensor (ODWS) based on binary
pixelated linear and nonlinear amplitude filtering in the far-
field. We trained and tested a convolutional neural network
that reconstructs the spatial phase map from nonlinear-
filter-based ODWS data for which an analytic reconstruction
algorithm is not available. It shows accurate zonal retrieval
over different magnitudes of wavefronts and on randomly
shaped wavefronts. This work paves the way for the imple-
mentation of simultaneously sensitive, high dynamic range,
and high-resolution wavefront sensing.
© 2024 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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Phase measurement of an optical wave is essential in the
metrology of optical components, adaptive optics, and laser
beam quality assessment. The Shack–Hartmann wavefront sen-
sor (SHWS) obtains wavefront slopes by measuring centroid
displacements at the focal plane of an array of microlenses.
It is limited in spatial resolution and dynamic range, which
are dependent on the pitch and focal length of the microlens
array [1,2]. Interferometry with an adaptive nulling component
such as a deformable mirror or a spatial light modulator (SLM)
can offer reconfigurable surface measurements. In both cases,
a high-performance wavefront sensor is required to monitor the
adaptive component [3,4].

One promising phase measurement method is the optical dif-
ferentiation wavefront sensor (ODWS), which is based on the
amplitude modulation in the far-field of the wave under test [5,6].
The resulting near-field fluence, with and without the filter, leads
to the slopes of the input wavefront in the direction of the filter
transmission gradient. The full input phase map can be recon-
structed from two wavefront slope datasets obtained with two
orthogonal orientations of the filter. Compared to the SHWS,
the ODWS has the advantages of higher spatial resolution that
is only limited by the camera pixel pitch, higher signal-to-noise
ratio, and a scalable dynamic range with an increase in the filter
size [7].

The accurate realization of the filter’s spatially varying
amplitude transmission is important for ODWS operation.
Amplitude modulations based on a liquid-crystal SLM and a
static filter functioning as a spatially varying polarization rota-
tor were previously proposed, but they are polarization- and
wavelength-dependent [8,9].

In this work, the amplitude transmission profile has been
realized by a pixelated filter composed of a distribution of
transparent and opaque pixels [10] implemented using a spa-
tial dithering algorithm [11]. Such a filter can be fabricated
by the lithography of a metal layer deposited on a glass plate.
It is static, polarization-independent, and achromatic [12]. We
have previously demonstrated ODWS-based wavefront sensing
via implementing a binary pixelated filter with a linear ampli-
tude transmission profile [10,13,14]. Including this work, we
scaled the ODWS dynamic range tenfold by increasing the width
of the linear filters from 2 to 20 mm [10,13,14]. It is feasi-
ble to further scale the dynamic range by another 10 times or
more by deploying filters with a width of 250 mm, a commer-
cially available 10-in. wafer. The potential applications of the
ODWS include surface quality assessment for freeform or com-
plex shaped optics during fabrication and wavefront sensing for
laser beams, ground telescopes, and vision.

The ODWS has an intrinsic trade-off between the dynamic
range and sensitivity. The dynamic range of the wavefront slopes
measured by an ODWS is proportional to the filter width and
inversely proportional to the focal length of the imaging system.
However, the sensitivity is inversely proportional to the width
of the linear filter [6,15]. We note that the spatial frequency of
the near field beam at the far-field filter location increases from
the center to the edge of the filters. A filter with a nonlinear
transmission profile that generates steep and shallow transmis-
sion slopes for low and high spatial frequencies can overcome
the trade-off, providing higher sensitivity and higher accuracy
for wavefronts dominated by lower spatial frequency compo-
nents. However, there is no closed-form analytical solution to
relate the fluence images to the wavefront for a nonlinear far-
field modulation. Recently, deep learning has attracted interest
in image-based wavefront sensing [9,16–20]. This data-driven
approach establishes complex nonlinear relations between sys-
tem inputs and outputs, without details of a physical model
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Fig. 1. Schematic of the experimental ODWS setup.

of the system. Convolutional neural network (CNN) archi-
tectures using modal coefficients to restore wavefronts have
been designed to predict deformable mirror modes for ODWS
that uses liquid-crystal-based nonlinear filters [8,9]. However,
such filter implementations are polarization- and wavelength-
dependent. Additionally, it is challenging to efficiently restore
randomly shaped wavefronts using a modal-coefficient-based
CNN [17,18].

In this Letter, we report an ODWS using a binary pix-
elated filter with nonlinear amplitude transmission and a
zonal-reconstruction-based CNN architecture for achromatic,
polarization-insensitive, generalized, and robust phase recon-
struction. Generalized phase reconstruction refers to retrieving
complex and random wavefronts that cannot be efficiently
restored by modal-coefficient-based solutions because a large
number of modes are required.

We aim to use pixelated nonlinear filters to overcome the
dynamic range and sensitivity trade-off, providing higher sen-
sitivity for low wavefront slope within a fixed dynamic range.
We also aim to improve the accuracy and robustness for wave-
front restoration by devising a zonal-reconstruction-based CNN
architecture. While such a CNN architecture has been proposed
to obtain spatial phase information for SHWS and deflectometry
[17–19], it has not been demonstrated for robust ODWS-based
wavefront restoration.

Figure 1 shows the experimental ODWS layout. A high-
definition analog SLM (Meadowlark Optics XY Phase Series)
is positioned at the object plane to generate wavefronts [4]. The
first two lenses form a telephoto system which is confocal with
the third lens. The camera is at the image plane of the overall
optical system, conjugate to the SLM plane, where the wave-
front φ is to be measured. The amplitude transmission filter is
placed at the focal plane of the telephoto, on the image side.
The setup is built per the design parameters described in [14].
The spatial resolution of the measured wavefront is 50.7 µm.
The square aperture that inscribes the circular wavefront has
192× 192 sampling points.

For a linear amplitude transmission gradient filter, the relation
between the fluence profile at the image plane and the wavefront
slope in the x direction (horizontal) is described by Eq. (1) as
follows:
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where F0 is the fluence with 100% uniform filter transmission
(T0 = 1), W is the filter width, Fx is the fluence map obtained
with the filter transmission gradient along the x direction, f is the
effective focal length (EFL) of the telephoto system, and m is the
magnification. Similarly, wavefront slopes along the y direction
(vertical) can be obtained from the fluence map Fy measured at
the image plane with a 90° filter rotation. The wavefront map
is reconstructed from the obtained orthogonal slopes using the
Southwell’s zonal reconstruction procedure [21].

Fig. 2. (a) Amplitude transmission and (b) slope profiles for the
linear filter (LF), nonlinear filter 1 (NLF1), and nonlinear filter 2
(NLF2).

Wavefronts with steep slopes can be measured with an ODWS
by employing an amplitude filter of large width. From Eq. (1),
the ratio in fluence values, with and without the filter, decreases
with increasing filter width for a fixed wavefront slope. Thus,
when detection noise is present, the measurement of small phase
variations is corrupted by a large filter width, leading to the
decrease in sensitivity. A nonlinear transmission profile with a
relatively high amplitude transmission gradient near the center
region of a filter having an overall large width is thus both
sensitive and high dynamic range.

The transmission profiles of the binary pixelated nonlinear
filters investigated in this work are described as follows [8]:
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The transmission profile in Eq. (2) is the combination of a
linear filter and a step-like function where β and σ determine
the height and width of the step, respectively.

In this work, we designed and implemented three filters with
the same width of 20 mm but having significantly different slopes
in the center and the outer portions of the filters, correspond-
ing to the steep and shallow slope regions, respectively (Fig. 2).
Figures 2(a) and 2(b) respectively show the transmission and
slope profiles of these three filters: one linear filter (LF) and
two nonlinear filters (NLF1 and NLF2). The corresponding
transmission slopes at the center regions are 0.05, 0.10, and
0.20 mm−1, respectively. In comparison to the LF, the transmis-
sion slopes of NLF1 and NLF2 are increasingly steeper at the
center region while becoming progressively shallower in the
outer regions, respectively. Such a design consideration allows
us to compare the impact of the spatially variant transmission
on sensitivity measurement.

Figure 3(a) shows the CNN architecture implemented to
retrieve the wavefront from the ODWS fluence images generated
with these filters. The CNN is inspired by the U-Net architecture
[17–19,22] and implemented in the PyTorch framework [23].

The input and output of the CNN are the fluence image ratios
(Fx/F0, Fy/F0) and the corresponding wavefronts, respectively.
The two-channel input of fluence image ratios is first processed
by a series of encoder layers, shown as the blue blocks. As
illustrated by the architecture of encoder layers in Fig. 3(b),
the fluence ratios are sequentially processed to produce fea-
ture maps through batch normalization, convolution operations,
average pooling, and activation with a leaky rectified linear unit
(ReLU). With each consecutive encoder layer, the spatial size of
the feature maps is halved, and the number of feature maps is
doubled. After the encoder layers, the feature maps are processed
through the decoder layers, shown in green blocks. As per the
architecture of decoder layers in Fig. 3(c), the feature maps are
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Fig. 3. (a) Overall CNN architecture with encoder (blue blocks)
and decoder (green blocks) layers for wavefront reconstruction from
ODWS fluence ratio maps; the number under each block is the depth
of the feature maps or the number of convolution kernels in that
layer. (b) Architecture of an encoder layer. (c) Architecture of a
decoder layer.

Fig. 4. Histograms of (a) the peak-to-valley (PV) and (b) the
maximum slopes of the 10,000-wavefront dataset.

sequentially processed through up-sampling-transposed convo-
lution, followed by convolution with kernels and activation with
leaky ReLU. In this layer, the up-sampled feature maps are con-
catenated with features from the encoder layers which facilitate
convergence of the CNN. In each consecutive decoder layer, the
number of feature maps is halved, and the spatial dimension is
doubled. The output of the last layer is resized to a depth of
one by applying 1× 1 convolution (red arrow). The output rep-
resents the reconstructed wavefront map, where the spatial array
dimensions are equal to those of the input fluence ratio maps.

The network is trained by minimizing a loss function. The
loss function is defined as the root mean square of the resid-
ual between the CNN-predicted wavefront and the ground-truth
wavefront. A total of 500 training cycles are used with each
cycle trained in steps with mini batches of 64 wavefronts.

The strategy for generating the input training dataset is to
provide sufficient wavefront variability while ensuring that the
wavefront slopes are within the dynamic range of the ODWS.
Figure 4 shows the statistics of the 10,000-wavefront set gener-
ated for training and testing purposes. The peak-to-valley spread
of the input wavefronts is between 0 and 10 λ (λ= 632.8 nm),
and the maximum slope for each wavefront is between −4.6 and
4.6 λ/mm (in each orthogonal direction), primarily limited by the
proof-of-concept filter width of 20 mm. Considering the first 37
terms of the Fringe Zernike polynomials, the 10,000-wavefront
data consist of three sets: Set 1 is created with randomized
individual Fringe Zernike polynomials, Set 2 consists of com-
bined Fringe Zernike polynomials with coefficients chosen from
unique normal distributions, and Set 3 is the combination of
different Fringe Zernike wavefronts and random patterns. The
random patterns are generated by assigning a random value
within a set range at each pixel of the wavefront matrix, which
is then convolved with a Gaussian filter to ensure that the maxi-
mum slope is within the dynamic range [24]. We first trained and

Fig. 5. Histograms of the residual RMS of the 1000 test wave-
fronts retrieved by the CNN using the fluence data obtained
respectively from simulation (top row) and experiment (bottom
row). (a) and (e) Linear filter LF; (b) and (f) nonlinear filter NLF1;
(c) and (g) nonlinear filter NLF2; and (d) and (h) retrievals using
the analytic equation.

tested the CNN for each of the three ODWS filter configurations
(Fig. 2) through simulation, then repeated the entire process with
experiments. The same 10,000 input ground-truth wavefronts
were paired with their corresponding ODWS fluence ratio maps
to train and test each filter configuration. Nine thousand ground-
truth wavefronts were used for training, and 1000 were used for
testing. This separate training process for the three filters, both
in simulation and experiments, resulted in a total of six sets of
CNN testing results for the same 1000 testing wavefronts. For
simulation, the fluence maps were generated theoretically using
an ODWS model based on the Rayleigh–Sommerfeld diffrac-
tion. For experiments, the input wavefronts were created by the
SLM in the setup shown in Fig. 1, and the corresponding flu-
ences were experimentally captured at the image plane of the
ODWS. The SLM was custom-calibrated to precisely account
for the wavelength used in this experiment, and its 4π phase
modulation range [4].

It takes approximately 3 h for each CNN training, using an
NVIDIA A100 GPU. A test wavefront is retrieved from the
fluence in 110 ms using the trained CNN. This speed can be sig-
nificantly improved by further optimizing the CNN architecture
and reducing its number of parameters (layers, channels, etc.),
which is beyond the scope of this work.

Figure 5 shows the histograms of the residual wavefronts
(RMS) from simulations [Figs. 5(a)–5(d)] and experiments
[Figs. 5(e)–5(h)]. For the linear-filter configuration, the test
wavefronts were also reconstructed using the analytic equa-
tion, using the simulated and experimentally measured fluence
ratios [Figs. 5(d) and 5(h)]. The residual wavefront is defined as
the difference between the ground truth and the reconstructed
wavefront.

The CNN-based wavefront retrievals for all three filters
statistically have lower residual wavefront RMS than the cor-
responding analytic reconstruction results for the linear filter,
validated by simulation and experimental results. The statisti-
cal mean values of the residual RMS for the CNN retrieval are
0.015 λ for the simulation and 0.027 λ for experiments, signif-
icantly less than the corresponding statistics from the analytic
method, 0.040 λ and 0.100 λ, respectively.

This result demonstrates that the CNN is statistically more
accurate in comparison to the analytic equation. The inadequacy
of the analytic equation compared to the simulation-based CNN
prediction may be attributed to the slowly varying amplitude
assumption made in its derivation and the robustness of the
wavefront slope integration [25,26]. Comparing the respective
experimental and simulation results for each filter by the CNN
and the analytic equation, the experimental accuracy deteriorates
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Fig. 6. Normalized wavefront error (WFE) for the LF, NLF1, and
NLF2.

Fig. 7. CNN performance on a random pattern wavefront: (a)
ground truth (PV: 4.777 λ, RMS: 0.780 λ); (b) CNN prediction (PV:
4.513 λ, RMS: 0.799 λ); (c) residual (RMS: 0.056 λ).

for both the CNN and the analytic methods. However, the dete-
rioration is much higher for the analytic method. The additional
deterioration is due to system imperfections, such as detector
noise, residual misalignments, and inaccuracy in amplitude
transmission realized with the spatially dithered binary pixe-
lated filters. The analytic equation does not account for these
imperfections, while the CNN mitigates these undesired effects
during the learning process. These results statistically prove that
the zonal-reconstruction-based CNN is more robust to these
system imperfections as compared to the analytic equation.

We further characterized the effectiveness of using nonlin-
ear filters to achieve higher sensitivity for a given dynamic
range limited by the prototype filter width of 20 mm. Figure 6
shows the residual RMS wavefront errors (WFEs), normalized
with respect to the input wavefront RMS of the 1000 experi-
mentally measured wavefronts as a function of the maximum
wavefront slope. We observe a progressive increase in measure-
ment accuracy for the wavefronts with low wavefront slopes,
as filters with a larger center slope are used, specifically 0.05,
0.10, and 0.20 mm−1 for the LF, NLF1, and NLF2, respectively.
This demonstrates the improved measurement sensitivity with-
out sacrificing the dynamic range by using the nonlinear filter
profiles. See Supplement 1 for the fluence and restored wave-
front maps for an example of ground-truth wavefront where the
effect of the sensitivity gain is clearly observed.

We finally demonstrate the effectiveness of a zonal-
reconstruction-based CNN architecture in predicting random
phase profiles, which cannot be efficiently restored by a modal-
coefficient-based CNN architecture, such as using deformable
mirror modes or Zernike coefficients. Figure 7(a) shows a hybrid
wavefront that is a combination of Zernike aberrations and a
random-pattern phase profile. The corresponding CNN predic-
tion (using NLF2) from the experimentally measured ODWS
fluence maps and its difference from the ground truth (residual
RMS: 0.056 λ) is plotted in Figs. 7(b) and 7(c), respectively.
This result indicates that the CNN can retrieve complex wave-
front shapes that can be present in astronomical imaging and
biological samples.

In conclusion, we have demonstrated a binary pixelated
nonlinear-filter-based ODWS using a CNN as a robust wavefront
reconstructor. We have improved sensitivity without sacrificing
dynamic range, overcoming the trade-off between dynamic range
and sensitivity. Through simulations and experiments, we show
that the zonal-reconstruction-based CNN architecture provides
higher accuracy and robustness than the analytic reconstruction,
with respective statistical mean residual RMS of 0.027 λ and
0.100 λ for experiments. Additionally, we have experimentally
demonstrated that this CNN architecture is capable of retriev-
ing complex wavefront shapes that modal coefficients cannot
efficiently describe.
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